
Vectors (for AP Physics C)

Vector means

a spatial relationship between an arrowhead and an arrow tail.

Symbols and features

Symbol: $\vec{\mathbf{r}}$

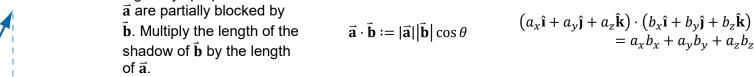
Length (magnitude): |r|

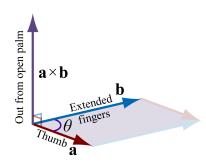
Direction (for example, for a vector confined to the xy plane, one could use the angle θ counter-clockwise from the +x axis).

Component expression

$$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$$

$$\vec{\mathbf{a}} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}$$




Dot product means

Light rays perpendicular to \vec{a} are partially blocked by shadow of $\vec{\mathbf{b}}$ by the length

Mathematical definition

Computing formula

Cross product means

Construct a vector perpendicular to both \vec{a} and \vec{b} using the RHR. The magnitude of the vector equals the area of the parallelogram spanned by \vec{a} and \vec{b} .

Mathematical definition

 $\vec{\mathbf{a}} \times \vec{\mathbf{b}} := |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin \theta \vec{\mathbf{u}}_{\vec{\mathbf{a}} \times \vec{\mathbf{b}}}$

Computing formula

$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$